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Tentative schedule

week | topic | date(a /s )
1 Machine Learning Introduction & Basic Mathematics 09.02 / 09.07
2 Python Practice | & Regression 09.09 / 09.14
3 Al Department Seminar | & Clustering | 09.16 / 09.21
4 Clustering Il & Classification | 09.23 / 09.28
5 Classification Il ( w)/10.05
6 Python Practice Il & Support Vector Machine | 10.07 / 10.12
7 Support Vector Machine Il & Ensemble Learning and Random Forest | 10.14 / 10.19
8 (3 )& Mid-term exam 10.21 / 10.26
9 Neural networks 10.28 / 11.02
10 Backpropagation 11.04 / 11.09
11 Convolutional Neural Network 1111/ 11.16
12 Model Optimization 1118 /11.23
13 Recurrent Neural network 1125/ 11.30
14 Autoencoders 12.02 / 12.07
15 Final exam (3)/12.14
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SVM: Maximum Margin Classifier



What is a good decision boundary?

= OJO|E =O|=0| CHF ZH 1Y (Robustness)
LO|=EE 2Ahol l3H i ZAs 240| 22 =Eo|Ct,

s RER A0 O ZHICH = H2 27t ELF = Large Margin Classification
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What is a good decision boundary?
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Figure 5-1. Large margin classi cation
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Figure 5-2. Sensitivity to feature scales
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Hard margin vs. soft margin

Hard margin classification (hard-SVMm)
- ®t b t  margin 04~ | "E boundaryd ¥
- h PN N"Eo & b 3 (linearly separable) xQ T b3
- outlier41 00 YB
Soft margin classification (soft-SVM)
- margin, b3 y 1  ®»l marginy NEt AAdv w
- hyperparameterC: 2a"E M (AH), . a"EyvA (Q 1)

4/32



Hard margin vs. soft margin
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Figure 5-3. Hard margin sensitivity to outliers
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Figure 5-4. Large margin (le ) versus fewer margin violations (right)
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A brief history of SVM

- SVMX 19928 Boser, Guyon and Vapnik bt kO

- Statistical Learning Theory4 "E & , P Ma & (Vapnik

Chervonenkis)
s

N 4 EAe E3 T @by ®OM 1O
- SVMN "E 11% Test error rate ~° v £0 ° Ai (eg, LeNet 4)O
i A,
“f N'Ebda &3
- bioinformatics, text, image recognition U, OX £ |é

"3A s a as A Y, ol
-a Jea o704 v O wroutlier detection] 2

o | T ®/ " dh h o0 i
AT Y, 4 B U Kernel “, I v d
Mo d
AT Y, A b vOM v ol THAY Y., HQt S vvA
C u

- Liblinear libsvm: Scikit-Learn 4 + liblinear ¢ libsvm,, i 4 -



Convex Optimization and Duality



MoG: Lagrange multiplier

The method can be summarized as follows: in order to find the
maximum or minimum of a function [(0) subjected to the equality
constraint 0(0) = 0, form the Lagrangian function

L@ )=010 00O (1)

and find the stationary points of L considered as a function of 0 and
the Lagrange multiplier . The solution corresponding to the original
constrained optimization is always a saddle point of the Lagrangian
function, which can be identified among the stationary points from
the definiteness of the bordered Hessian matrix.
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MoG: Lagrange multiplier

Minimize 0(0;0) = 0 + 0 subject to the constraint 12 + 02 =1, i.e,

0C;0)=0+02 1=0 )
Hence,
L0 )=U0;0)+ 0@;0)=0+0+ (1?°+0%2 1) (3)
Gradient
roo LGD )=(@Q+2 0;1+2 0:02 + 02 1) (4)
and therefore,
8
=1+20=0
rog, LGD ) O _ 1+20=0 (5)

- 2+02 1=0
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MoG: Lagrange multiplier

8
=1+20=0
o LG ) O _ 1+20=0 (6)
! =
-2+ 1=0
This yields
1
0=0= —; 7
i &0 )
1 1
R 1=0 (8)
So,
1
= — 9)
P (
which implies that the stationa'ry points of L are
7;71 A I A 7 7;7 (10)
2 2 2 2 2 2
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Optimization problem in standard form

minimize To(0) (1)
subjectto [(0) O; 1=1;2;::;0 (12)
0.(0) = 0; 1=1;2;:::0 (13)

- 02 RYis the optimization variable
- Jo: R” ¥ R s the objective or cost function
- 1:RY B R;I1=1;2;:::; 0 are the inequality constraint functions

- 0,: RY ¥ R are the equality constraint functions
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Convex optimization problem

Standard form convex optimization problem

minimize (D) (14)
subjectto [(0) O; 1=1;2;::;0 (15)
050 = O;; =Nz (16)

+ lo;0q; 20 0g are convex
- equality constraints are affine

Often written as

minimize o(0) (17)
subjectto [,(0) O; 1=1;2;:::;0 (18)
0o=10a (19)

Important property: feasible set of a convex optimization problem is

convex
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Optimality criterion for differentiable [,

0is optimal if and only if it is feasible and

rig(M°@ 0) 0 forallfeasible D (20)

if nonzero, riy(0) defines a supporting hyperplane to feasible set [
at
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standard form problem

minimize To(0) (21)
subjectto [(0) O; 1=1;2;:::;0 (22)
0,(0) = 0; 1=1;2;::::0 (23)

variable 0 2 RY, domain D, optimal value O
Lagrangian: 0: R RP R ¥ RwithooOO=D RY R?

X X
0@ ;) =@ + k(@) + 0@ (24)
=1 =1

- weighted sum of objective and constraint functions
1 is Lagrange multiplier associated with I:(0) 0
1 is Lagrange multiplier associated with 0;(0) =0
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Lagrange dual function

Lagrange dual function: 1:R? RY I R

0C: )=1000@ 5 ) (25)

X <
-2b =1 =1
Ois concave, can be 1A forsome ;
lower bound property: if 0,thenO( ; ) O
proof: if & is feasible and 0, then

@ O ;) [M00@ ;)=0(; ) (27)

minimizing over all feasible & gives O oc ;)
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The dual problem

Lagrange dual problem

maximize 0O( ; ) (28)
subject to 0 (29)

- finds best lower bound on O , obtained from Lagrange dual
function

- a convex optimization problem; optimal value denoted [
are dual feasible if 0,(; )20000

- often simplified by making implicit constraint ( ; )2 0000
explicit
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Weak and strong duality

weak duality: O 0

- always holds (for convex and nonconvex problems)

- can be used to find nontrivial lower bounds for difficult
problems

strong duality: 0 =10

- does not hold in general
- holds for convex problems

- conditions that guarantee strong duality in convex problems are
called constraint qualifications
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Geometric interpretation

for simplicity, consider problem with one constraintl;(0) 0

interpretation of dual function

o) = (EEQ%G(D + 0) where G = f(01(0);1o(0)) j02Dg  (30)

,,,,,,,,, lp
Au +t ::g(A)\\\\\\\\\\‘ A)

L
*

0+ 0=0( ) issupporting hyperplane to G
- hyperplane intersects I-axis at 1 =0( )
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Geometric interpretation

m Primal problem:

minimize f(x)
subject to g(x) <0,
XEX

where f: R" > R, g:R*—R”

n=20f tisjA, He g & ChE 1t 20| FolBtA}

G=1{(,2) | y=gx),z=f(x) for some x € X} @p <2
= J2{%, G & A (o./) SHOIA X 2] X| % image)O| T @/\
&NH: X—g g

12{®™ Primal solution2 X|4& M2 XEZ 2 #+= y
<02l gLl Holttk

(8(x), f(x))

0" 2)

= clearly (", z)
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Geometric interpretation

m Lagrange Dual Problem
maximize, O(u)
subjectto u =0
where (Lagrangian subproblem):
O(u) = inf{f(x) +ug(x):x € X}.

0 2 [}, Lagrangian dual subproblem 2 CtS1t &
ct.

minimize z+ uy over points (y, z) in G,
O47|M z+uy=a= 7|€7|7F —u 0|1 7 =1} BHLt=

HO0l a2 HHAo|CH

=
|

on =

t

&S RAGHEM H Y z+uy=a [S3H LH
27t 22 A0X|= -5 EH

Oll TH-S3t= 6(u) 4OIC.

2. G Ofl CHSH A 6u) = z + uy & |2 3}517
3

o
0=l'
Qo

G “(g(x).f(x))

Z+uy=a
029 zZ=-uy+a
Yy
(8(), f(x))

Ou)y—rp z+uy=a
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Geometric interpretation

&fhH =
3. OFX|2f2 2 dual problem & 27| YISi M=, XF9| -5
B 2 o) 7 2/TH20| £ 7187] 0> 0) 8 OF
OF $tCt.
Ol2{et HH2 7| 277k —u 01 M v+, z) N T G
G & X /(supporn Btct.
JHDEdMWmmeﬂLfUWmﬂHdW e
objective valuet z* O|C}. 0" 2)
Ou)—P 2TUWy =0
Primal problem I} dual problem 2| X|&slj7} & Lot A2,
duality gap O] Tt LSIC} (strong duality).
SUSHK| Y2 42 duality gap O] EX{THCHD LkCt (g./) <
(weak duality).
G (8(x), f(x))
i""%dﬂ' c:r’)nvexity condition %gll SZE|™ primal It dual P
*|=3l 2 ; C e =
| M3t 2 X0 duality gap O S1CH. D G“’B_I: _______ A
2% 381 2% G 2] nonconvexity 2 218t Duality Gap ootimaliprimaliobiectye z
f(X) > H(u) optimal dual objective z+uy=
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a
problem with differentiable I;; 0;)
1. primal constraints: (D) 0i=1,.,m 0()=0,i=1,..,p
2. dual constraints: 0
3. complementary slackness: L(0) =0;0=1;::;0
4. gradient of Lagrangian with respect to U vanishes:

> X
=1 =1

if strong duality holds and 0; ; are optimal, then they must satisfy
the KKT conditions
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SVM: Theory




Maximum margin classifier

We begin our discussion of support vector machines to the two-class
classification problem using linear models of the form

o =0° (@+0 (32)

where (0) denotes a fixed feature-space transformation, and we
have made the bias parameter O explicit.

The training data set comprises O input vectors Oy; Op; :::; O, with
corresponding target values 0y; Ip; ::1; g where I 2 £ 1;1g, and new
data points 0 are classified according to the sign of 0(0)
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Maximum margin classifier

We shall assume that the training data set is linearly separable in
feature space, so that by definition there exists at least one choice of
the parameters [ and O such that a function satisfies 0(Og) > 0 for
points having I = +1 and 0(0g) < 0 for points havinglp = 1, s0
that 0o0(0p) > 0 for all training data points.
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Maximum margin classifier: optimality criterion

Thus the distance of a point O to the decision surface is given by

000(0o) _ 0n(3" (Co) + D),
kOk kOk ' )

The margin is given by the perpendicular distance to the closest
point Op from the data set, and we wish to optimize the parameters
[0 and O in order to maximize this distance. Thus the maximum
margin solution is found by solving

1 i
DD%V;DEDD mD_D[DD(D (To) + D)) (34)

where we have taken the factor 1/k[Jk outside the optimization over
0 because 0 does not depend on O.
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Dual problem for convex optimiztion

Direct solution of this optimization problem would be very complex,
so we shall convert it into an equivalent problem that is much easier
to solve.

25/32



Lagrangian function with constraint

In order to solve this constrained optimization problem, we
introduce Lagrange multipliers Op 0, with one multiplier Og for
each of the constraints, giving the Lagrangian function

1 2 X 0
0(0; 0; 0) = kil O fp(0° (Og) +0) 1g (35)
0=1
where 0 = (Og;:::; 0p)". Note the minus sign in front of the Lagrange
multiplier term, because we are minimizing with respect to [ and [,
and maximizing with respect to 0.

Setting the derivatives of 0([J; 0; 0) with respect to O and 0 equal to
zero, we obtain the following two conditions

X

O= Oy (On) (36)

0= 0Ogg (37)



Lagrangian function with constraint

Eliminating O and O from 0(J; 0; 0) using these conditions then gives
the DOOC 0000000000000 of the maximum margin problem in which
we maximize
> 1 XX
oo = g 2
0=1 0=10=1

Og0alaln0(0g; Og) (38)

with respect to 0 subject to the constraints

Oplg = 0: (40)
0=1

Here the kernel function is defined by 0(0; 0% = (0) (O9.
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Prediction for a new sample: support vector machine

In order to classify new data points using the trained model, we
evaluate the sign of 0(0). This can be expressed in terms of the
parameter fpg and the kernel function by substituting for O to give

=
0(0) =  Oglg0(d; Og) + O (41)
0=1
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KKT condition: complementary slackness

We show that a constrained optimization of this form satisfies the
000000000000000000 (KKT) conditions, which in this case require that
the following three properties hold

Og O (42)
Ib(Cy) 1 0 (43)

Thus for every data point, either 0y = 0 or 0;0(0p) = 1. Any data
point for which Op = 0 will not appear in the sum and hence plays no
role in making predictions for new data points. The remaining data
points are called 0000000 0000000, and because they satisfy

0o0(0p) = 1, they correspond to points that lie on the maximum
margin hyperplanes in feature space.
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KKT condition: complementary slackness

/
/
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KKT condition: complementary slackness

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.
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Appendix




Reference and further reading

- “Chap 7 | Sparse Kernel Machines” of C. Bishop, Pattern
Recognition and Machine Learning

- “Chap 5 | Support Vector Machines” of A. Geron, Hands-On
Machine Learning with Scikit-Learn, Keras & TensorFlow

- “Chap 4 | Convex Optimization Problems”, “Chap 5 | Duality” of S.
Boyd, Convex Optimization

- “Lecture 6 | Support Vector Machines” of Kwang Il Kim, Machine
Learning (2019)
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