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Tentative schedule

week topic date בּ) / )

1 Machine Learning Introduction & Basic Mathematics 09.02 / 09.07
2 Python Practice I & Regression 09.09 / 09.14
3 AI Department Seminar I & Clustering I 09.16 / 09.21
4 Clustering II & Classification I 09.23 / 09.28
5 Classification II ( ♅) / 10.05
6 Python Practice II & Support Vector Machine I 10.07 / 10.12
7 Support Vector Machine II & Ensemble Learning and Random Forest 10.14 / 10.19
8 ( ҙ) & Mid-term exam 10.21 / 10.26

9 Neural networks 10.28 / 11.02
10 Backpropagation 11.04 / 11.09
11 Convolutional Neural Network 11.11 / 11.16
12 Model Optimization 11.18 / 11.23
13 Recurrent Neural network 11.25 / 11.30
14 Autoencoders 12.02 / 12.07
15 Final exam ( ҙ) / 12.14
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SVM: Maximum Margin Classifier



What is a good decision boundary?

■ 데이터 노이즈에 대한강건성 (Robustness)

 노이즈(측정오차)에대해서강건한것이좋은모델이다.

■ 여유로운 것이 더강건하다 ⟹ 넓은통로가 좋다 ⟹ Large Margin Classification
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What is a good decision boundary?

▐Ӎ ӒӔ ḫ (support vectors) ♄Ӎ Ṑwidest possible street (represented by the parallel dashed lines) between the classes.
This is called large margin classi�cation.

Figure 5-1. Large margin classi�cation

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure 5-1).

SVMs are sensitive to the feature scales, as you can see in
Figure 5-2: on the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler), 
the decision boundary looks much better (on the right plot).

Figure 5-2. Sensitivity to feature scales

Soft Margin Classi�cation
If we strictly impose that all instances be off the street and on the right side, this is
called hard margin classi�cation. There are two main issues with hard margin classifi‐
cation. First, it only works if the data is linearly separable, and second it is quite sensi‐
tive to outliers. Figure 5-3 shows the iris dataset with just one additional outlier: on
the left, it is impossible to find a hard margin, and on the right the decision boundary
ends up very different from the one we saw in Figure 5-1 without the outlier, and it
will probably not generalize as well.
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Hard margin vs. soǒt margin

Hard margin classification (hard-SVM)

• ᾧṭḫ ṯ marginῸ ḻἜ boundaryὗ♥

• ḫ ҍ♠ Ἓₒὣҍᶾ (linearly separable) ẋὭ ҍᶾ

• outlier ὺ ῨҔ

Soǒt margin classification (soǒt-SVM)

• margin ҍᶾ ᵧӀ ᾠ♄ḻ margin Ἓṯ ᶷҹ

• hyperparameter C: Ἔבּ ( Ӊ), Ἔᵧבּ ( Ὼ )
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Hard margin vs. soǒt margin

Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues it is preferable to use a more flexible model. The objective is to
find a good balance between keeping the street as large as possible and limiting the
margin violations (i.e., instances that end up in the middle of the street or even on the
wrong side). This is called so� margin classi�cation.

In Scikit-Learn’s SVM classes, you can control this balance using the C hyperparame‐
ter: a smaller C value leads to a wider street but more margin violations. Figure 5-4
shows the decision boundaries and margins of two soft margin SVM classifiers on a
nonlinearly separable dataset. On the left, using a low C value the margin is quite
large, but many instances end up on the street. On the right, using a high C value the
classifier makes fewer margin violations but ends up with a smaller margin. However,
it seems likely that the first classifier will generalize better: in fact even on this train‐
ing set it makes fewer prediction errors, since most of the margin violations are
actually on the correct side of the decision boundary.

Figure 5-4. Large margin (le�) versus fewer margin violations (right)

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset, scales the features, and then
trains a linear SVM model (using the LinearSVC class with C = 1 and the hinge loss
function, described shortly) to detect Iris-Virginica flowers. The resulting model is
represented on the left of Figure 5-4.
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A brief history of SVM

• SVM 1992ᵹ Boser, Guyon and Vapnik ♄ꜙҟṐ

• Statistical Learning Theory Ἕ ῶ Ṗ әὣ (Vapnik
Chervonenkis)

• ꜜ֞ יּ ♄Ề ᵄⱠᶾ  ᾠ♄ᵥὣ ӀṐ

• SVM Ἓ 1.1% Test error rate ≈ ♥ӔṎ Ӓὶ (e.g., LeNet 4)Ӧ
ίᾋ

• Ἓ בּ Ⱡᶾ

• bioinformatics, text, image recognitionṴ Ὦ ⱠӤ▐ἕ

• ҙἍ әḁ ḁᶾ ᾊ Ỵ᷿ᾧḮ

• ♠ /℮♠ ₒὊ╝ ᷄Ớ ԝ* outlier detectionḻּב
•  ꜙ֗ᾧ/ ֗ᾧḫ ⱨ ₒὊ ί

• ᾊ Ỵ᷿ ♄ ֥“ ᵁ Kernel “ ▐ ᶷḓ

әὣ

• ᾊ Ỵ᷿ ♄ҍ ᵥὣ ᶷᾧḮ ᾞᾊ Ỵ᷿ ᾞῺṫ

֥“ ᵁ

• Liblinear libsvm: Scikit-Learn ♄ liblinearῳ libsvm ▐ Ԃ 6/32



Convex Optimization and Duality



MoG: Lagrange multiplier

The method can be summarized as follows: in order to find the
maximum or minimum of a function ( ) subjected to the equality
constraint ( ) = 0, form the Lagrangian function

L( ; �) = ( ) � � ( ) (1)

and find the stationary points of L considered as a function of and
the Lagrange multiplier �. The solution corresponding to the original
constrained optimization is always a saddle point of the Lagrangian
function, which can be identified among the stationary points from
the definiteness of the bordered Hessian matrix.
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MoG: Lagrange multiplier

Minimize ( ; ) = + subject to the constraint 2 + 2 = 1, i.e.,

( ; ) = 2 + 2 � 1 = 0 (2)

Hence,

L( ; ; �) = ( ; ) + � ( ; ) = + + �( 2 + 2 � 1) (3)

Gradient

r ; ;�L( ; ; �) = (1 + 2� ; 1 + 2� ; 2 + 2 � 1) (4)

and therefore,

r ; ;�L( ; ; �) ()

8><>:
1 + 2� = 0

1 + 2� = 0
2 + 2 � 1 = 0

(5)
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MoG: Lagrange multiplier

r ; ;�L( ; ; �) ()

8><>:
1 + 2� = 0

1 + 2� = 0
2 + 2 � 1 = 0

(6)

This yields

= = � 1

2�
; � 6= 0 (7)

1

4�2
+

1

4�2
� 1 = 0 (8)

So,

� = � 1p
2

(9)

which implies that the stationary points of L are p
2

2
;

p
2

2
; �

p
2

2

!
;

 
�

p
2

2
; �

p
2

2
;

p
2

2

!
(10)
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Optimization problem in standard form

minimize 0( ) (11)
subject to ( ) � 0; = 1; 2; :::; (12)

( ) = 0; = 1; 2; :::; (13)

• 2 R is the optimization variable
• 0 : R ! R is the objective or cost function
• : R ! R; = 1; 2; :::; are the inequality constraint functions
• : R ! R are the equality constraint functions
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Convex optimization problem

Standard form convex optimization problem

minimize 0( ) (14)
subject to ( ) � 0; = 1; 2; :::; (15)

= ; = 1; 2; :::; (16)

• 0; 1; :::; are convex
• equality constraints are affine

Oǒten written as

minimize 0( ) (17)
subject to ( ) � 0; = 1; 2; :::; (18)

= (19)

Important property: feasible set of a convex optimization problem is
convex
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Optimality criterion for differentiable 0

is optimal if and only if it is feasible and

r 0( ) ( � ) � 0 for all feasible (20)

Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x

Convex optimization problems 4–9

if nonzero, r 0( ) defines a supporting hyperplane to feasible set
at
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Lagrangian

standard form problem

minimize 0( ) (21)
subject to ( ) � 0; = 1; 2; :::; (22)

( ) = 0; = 1; 2; :::; (23)

variable 2 R , domain D, optimal value �

Lagrangian: : R � R � R ! R with = D � R � R

( ; �; �) = 0( ) +
X
=1

� ( ) +
X
=1

� ( ) (24)

• weighted sum of objective and constraint functions
• � is Lagrange multiplier associated with ( ) � 0

• � is Lagrange multiplier associated with ( ) = 0
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Lagrange dual function

Lagrange dual function: : R � R ! R

(�; �) =
2D

( ; �; �) (25)

=
2D

�
0( ) +

X
=1

� ( ) +
X
=1

� ( )

�
(26)

is concave, can be �1 for some �; �

lower bound property: if � � 0, then (�; �) � �

proof: if ~ is feasible and � � 0, then

0(~) � (~; �; �) �
2D

( ; �; �) = (�; �) (27)

minimizing over all feasible ~ gives � � (�; �)
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The dual problem

Lagrange dual problem

maximize (�; �) (28)
subject to � � 0 (29)

• finds best lower bound on �, obtained from Lagrange dual
function

• a convex optimization problem; optimal value denoted �

• �; � are dual feasible if � � 0, (�; �) 2
• oǒten simplified by making implicit constraint (�; �) 2
explicit
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Weak and strong duality

weak duality: � � �

• always holds (for convex and nonconvex problems)
• can be used to find nontrivial lower bounds for difficult
problems

strong duality: � = �

• does not hold in general
• holds for convex problems
• conditions that guarantee strong duality in convex problems are
called constraint qualifications
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Geometric interpretation

for simplicity, consider problem with one constraint 1( ) � 0

interpretation of dual function

(�) =
( ; )2G

( + � ) where G = f( 1( ); 0( )) j 2 Dg (30)

Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G

• hyperplane intersects t-axis at t = g(λ)

Duality 5–15

• � + = (�) is supporting hyperplane to G
• hyperplane intersects -axis at = (�)
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Geometric interpretation

■ Primal problem:

minimize  f(x)

subject to  g(x) ≤ 0,

x ∈ �

where f :  ℝn → ℝ,     g : ℝn → ℝm

 n = 2 에대해서, 집합 �를다음과같이정의하자.

� = {(y, z)  |  y = g(x), z = f(x) for some x ∈ �} 

⟹ 그러면, �는사상 (g, f) 하에서 �의치역(image)이다.

(g, f) :  � → �

 그러면 Primal solution은최소세로좌표값 z를갖는 y

≤ 0 인 �내의점이다.

⟹ clearly (y*, z*)

z

y

�

x

�

z

y

�

x

(g(x), f(x)) 
�

(g, f)

(y*, z*)

(g(x), f(x)) 

(g, f)
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Geometric interpretation

■ Lagrange Dual Problem

maximizeu θ(u)

subject to  u ≥ 0

where (Lagrangian subproblem):

θ(u) =  inf{f(x) + ug(x) : x ∈ �}.  

1. u ≥ 0 일때, Lagrangian dual subproblem은다음과동

등하다.

minimize  z + uy over points (y, z) in �,

여기서 z + uy = α는기울기가 − u이고 z축과만나는

점이 α 인직선식이다.

2. �에대해서 θ(u) = z + uy를최소화하기위해서 �와의

접촉을유지하면서직선 z + uy = α를평행이동해내

려가면, 최후로얻어지는 z-축절편값은주어진 u ≥ 0 

에대응하는 θ(u) 값이다.

z

y

�

x

(g(x), f(x)) 
�

(g, f)

(y*, z*)
z + uy = α

z = −uy + α

α

z

y

�

x

(g(x), f(x)) 
�

(g, f)

(y*, z*)

z + uy = αθ(u)
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Geometric interpretation

z

y

�

x
(g(x), f(x)) �

(g, f)

3. 마지막으로 dual problem 을풀기위해서는, 최후의 z-축
절편값 θ(u) 가최대값이되는기울기 −u (u ≥ 0) 를찾아
야한다.

이러한직선은기울기가 −u* 이고점 (y*, z*) 에서집합
�를지지(support)한다.

그러므로, dual problem 의해는 −u*이며최적 dual 
objective value는 z*이다.

 Primal problem 과 dual problem 의최적해가동일한경우,

duality gap 이없다고말한다 (strong duality).

 동일하지않은경우는 duality gap 이존재한다고말한다

(weak duality).

 적절한 convexity condition 들이충족되면 primal 과 dual 
최적화문제에 duality gap 이없다.

 [우측그림] 집합 �의 nonconvexity로인한 Duality Gap

f(x)  ≥ θ(u)  

z

y

�

x

(g(x), f(x)) 
�

(g, f)

(y*, z*)

z + uy = α
θ(u)

optimal primal objective

z + uy = αoptimal dual objective

Duality Gap
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a
problem with differentiable ; )

1. primal constraints: ( ) � 0 i = 1, ..., m, ( ) = 0, i = 1, ..., p
2. dual constraints: � � 0

3. complementary slackness: � ( ) = 0; = 1; :::;

4. gradient of Lagrangian with respect to vanishes:

r 0( ) +
X
=1

� r ( ) +
X
=1

� r ( ) = 0 (31)

if strong duality holds and ; �; � are optimal, then they must satisfy
the KKT conditions
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SVM: Theory



Maximum margin classifier

We begin our discussion of support vector machines to the two-class
classification problem using linear models of the form

( ) = �( ) + (32)

where �( ) denotes a fixed feature-space transformation, and we
have made the bias parameter explicit.

The training data set comprises input vectors 1; 2; :::; , with
corresponding target values 1; 2; :::; where 2 f�1; 1g, and new
data points are classified according to the sign of ( )
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Maximum margin classifier

We shall assume that the training data set is linearly separable in
feature space, so that by definition there exists at least one choice of
the parameters and such that a function satisfies ( ) > 0 for
points having = +1 and ( ) < 0 for points having = �1, so
that ( ) > 0 for all training data points.
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Maximum margin classifier: optimality criterion

Thus the distance of a point to the decision surface is given by

( )

k k
=

( �( ) + )

k k
: (33)

The margin is given by the perpendicular distance to the closest
point from the data set, and we wish to optimize the parameters
and in order to maximize this distance. Thus the maximum

margin solution is found by solving

w;

�
1

k k
[ ( �( ) + )]

�
(34)

where we have taken the factor 1/k k outside the optimization over
because does not depend on .
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Dual problem for convex optimiztion

Direct solution of this optimization problem would be very complex,
so we shall convert it into an equivalent problem that is much easier
to solve.
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Lagrangian function with constraint

In order to solve this constrained optimization problem, we
introduce Lagrange multipliers � 0, with one multiplier for
each of the constraints, giving the Lagrangian function

( ; ; ) =
1

2
k k2 �

X
=1

f ( �( ) + ) � 1g (35)

where = ( 1; :::; ) . Note the minus sign in front of the Lagrange
multiplier term, because we are minimizing with respect to and ,
and maximizing with respect to .

Setting the derivatives of ( ; ; ) with respect to and equal to
zero, we obtain the following two conditions

=
X

=1

�( ) (36)

0 =
X

=1

(37)
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Lagrangian function with constraint

Eliminating and from ( ; ; ) using these conditions then gives
the of the maximum margin problem in which
we maximize

~( ) =
X

=1

� 1

2

X
=1

X
=1

( ; ) (38)

with respect to subject to the constraints

� 0; = 1; :::; (39)X
=1

= 0: (40)

Here the kernel function is defined by ( ; 0) = �( ) �( 0).
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Prediction for a new sample: support vector machine

In order to classify new data points using the trained model, we
evaluate the sign of ( ). This can be expressed in terms of the
parameter f g and the kernel function by substituting for to give

( ) =
X

=1

( ; ) + (41)
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KKT condition: complementary slackness

We show that a constrained optimization of this form satisfies the
(KKT) conditions, which in this case require that

the following three properties hold

� 0 (42)
( ) � 1 � 0 (43)

f ( ) � 1g = 0 (44)

Thus for every data point, either = 0 or ( ) = 1. Any data
point for which = 0 will not appear in the sum and hence plays no
role in making predictions for new data points. The remaining data
points are called , and because they satisfy

( ) = 1, they correspond to points that lie on the maximum
margin hyperplanes in feature space.
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KKT condition: complementary slackness

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/‖w‖.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
‖w‖ =

tn(wTφ(xn) + b)
‖w‖ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

‖w‖ min
n

[
tn
(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/‖w‖ outside the optimization over n because w
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KKT condition: complementary slackness

7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn � 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points
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Appendix



Reference and further reading

• “Chap 7 | Sparse Kernel Machines” of C. Bishop, Pattern
Recognition and Machine Learning

• “Chap 5 | Support Vector Machines” of A. Geron, Hands-On
Machine Learning with Scikit-Learn, Keras & TensorFlow

• “Chap 4 | Convex Optimization Problems”, “Chap 5 | Duality” of S.
Boyd, Convex Optimization

• “Lecture 6 | Support Vector Machines” of Kwang Il Kim, Machine
Learning (2019)
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